The Endocannabinoid System (ECS)

Elnaz Karimian-Azari, PhD
Learning Objectives

• Review the physiological function of the endocannabinoid system (ECS) as a homeostatic regulator in the body
• Discuss strategies to support the endocannabinoid system
• Understand the bioactivities of phytocannabinoids and terpenes, as one of the approaches to support ECS functions
• Review safety of phytocannabinoids
History of the ECS

1960s
- Isolation and structure identification of THC and CBD

1963 and 1964
- Isolation and structure identification of THC and CBD

1970s
- Discovery of CB1 receptors in rat brains

1980s
- Discovery of the first eCB, AEA
- Discovery of the second eCB, 2-AG

1988
- Discovery of CB1 receptors in rat brains

1990s
- Discovery of CB2 receptors
- Discovery of the first cannabinoid-metabolizing enzyme, FAAH
- Discovery of other eCB and eCB-like compounds
- Cell biology and neuroscience studies
- Clinical trials initiated

2000s
- Discovery of other eCB and eCB-like compounds
- Cell biology and neuroscience studies
- Clinical trials initiated

2-AG, 2-arachidonoylglycerol; AEA, anandamide; CB1, cannabinoid receptor 1; CB2, cannabinoid receptor 2; CBD, cannabidiol; eCB, endogenous cannabinoid; ECS, endocannabinoid system; FAAH, fatty acid amide hydrolase; THC, tetrahydrocannabinol.
Role of the ECS

Nervous system
- Learning, memory, and cognition
- Motor control
- Anxiety and depression
- Appetite and food intake
- Reward and addiction
- Neuroprotection
- Neural development
- Brain plasticity
- Sleep
- Immune function (CNS)
- Pain sensation/response

Immune system
- Immune response/function
- Inflammation

Cardiovascular system
- Negative inotrope
- Vasodilation
- Cardiac function

Gastrointestinal tract
- Gastrointestinal motility
- Enteroendocrine function
- Intestinal barrier function
- Energy balance

Liver
- Ascites formation
- Lipogenesis
- Fibrosis
- Insulin resistance

Musculoskeletal system
- Energy metabolism
- Muscle fiber formation
- Bone health

Reproductive system
- Fertility regulation
- Embryo implantation
- Embryonic development

The ECS Comprises Three Main Elements

1. **Receptors**
 - CB1, CB2, TRPV$_1$, GPR55, PPAR

2. **Endocannabinoids (eCBs)**
 - 2-AG, AEA, virodhamine, NADA

3. **Enzymes**
 - Biosynthetic: NAPE-PLD (AEA); DAGL-α or DAGL-β (2-AG)
 - Degradation: FAAH or NAAA (AEA); MAGL, ABHD6, ABHD12, FAAH (2-AG)
 - Oxidative: COX-2, LOX, CYP450

MAGL, monoacylglycerol lipase; NAAA, N-acylethanolamine acid amide hydrolase; NADA; N-arachidonoyldopamine; PPAR, peroxisome proliferator activated receptor; TRP, transient receptor potential (channel); TRPV$_1$, transient receptor potential vanilloid 1; COX-2, cyclooxygenase-2; LOX, lipoxygenase; CYP450, cytochromeP450; DAGL-α, diacylglycerol lipase alpha; DAGL-β, diacylglycerol lipase beta

Distribution of CB1 and CB2 Receptors

CB1 receptors

- CB1 receptors are the most abundant G-protein coupled receptors in the central nervous system (CNS) and are highly expressed in regions associated with cognition and movement.\(^1\)
- CB1 is also present in the peripheral nervous system and several peripheral organs.\(^1\)

CB2 receptors

- CB2 receptors are predominantly found in the periphery and are mainly involved in immune system functions.\(^1\)
- In the CNS, CB2 in microglial cells is upregulated in response to immune cell activation and neuroinflammation.\(^2\)

Endogenous and Exogenous Cannabinoids

Endogenous

- **Endocannabinoids and endocannabinoid-like compounds**¹
 - Endogenous lipid mediators produced naturally in the body
 - 2-AG, AEA, NADA, PEA, OEA, virdhamine

Exogenous

- **Phytocannabinoids**²
 - Concentrated in the oily resin of the buds and leaves of plants such as *Cannabis* and *Helichrysum*
 - THC, CBD, CBG, CBDA, etc.

- **Synthetic cannabinoids**³
 - Manufactured by artificial means
 - Mimic the psychotropic effects of *Cannabis* but are associated with severe adverse effects

The Body’s Own Cannabinoids: Endocannabinoids (eCBs)

First known lipid-based neurotransmitters
Functionally different: regulation of food intake, immunomodulation, inflammation, analgesia, cancer, addictive behavior, epilepsy, and others

2-AG **AEA** **NADA** **virodhamine**

Derived from arachidonic acid-containing phospholipids

Anandamide (AEA)
CNS: social behavior, stress response; periphery: pain
It degrades by the enzyme FAAH when no longer needed

2-AG (2-arachidonoylglycerol)
Many functions in CNS and periphery...
It degrades by the enzyme MAGL when no longer needed

Factors Linked to Increased Endocannabinoids

- Stimuli
 - Stress & pain
 - Exercise
 - Food presentation
 - Time of day
 - Singing & dancing

Elevated Endocannabinoids

- Response effects
 - Appetite
 - Pain relief
 - Reduce anxiety & stress

© 2019 Metagenics Institute. All Rights Reserved
What Is Endocannabinoid (eCB) Tone?

Humans have an underlying eCB tone that reflects the level of eCBs, their synthesis and catabolism, and cannabinoid receptor density.

Low tone
Clinical endocannabinoid deficiency (CED)

High tone
Obesity and associated disorders

CED Is Central to Many Disorders

- CED may be genetic/congenital or acquired due to injury or disease
- Substantial objective evidence points to association with pathophysiological syndromes
 - Strongest evidence in migraine, fibromyalgia, and IBS
- Several strategies exist to rebalance the ECS

Russo EB. Cannabis Cannabinoid Res. 2016;1;154-165.
High Endocannabinoid Tone and Development of Type 2 Diabetes

• Obesity increases eCB levels and/or CB1 receptor expression; high eCB tone contributes to further fat accumulation
• Independent of weight gain, high eCB tone:
 o Reduces insulin sensitivity in the liver, adipose tissue, and skeletal muscle
 o Causes loss of pancreatic β cells, leading to insulin deficiency

Figure adapted from: Gruden et al. Br J Pharmacol. 2016;173:1116-1127.

Potential Clinical Interventions for Supporting ECS Function

Upregulation of ECS

Complementary and alternative medicine
- Nutritional bioactives such as prebiotics and probiotics, and omega-3s
- Herbal remedies
- Meditation
- Yoga
- Acupuncture
- Massage
- Spinal manipulation

Lifestyle modifications
- Diet
- Weight control
- Exercise
- Reduced exposure to EDCs

Summary: Key Points

- ECS is involved in regulating several physiological functions
- A balanced ECS is needed for optimal health
- eCB deficiency is evident in many disorders and can be modulated via several strategies, including lifestyle modification and administration of nutritional bioactives
Supporting and Nourishing the ECS with Nutritional Bioactives
Phytocannabinoids

- Represent a group of plant-derived cannabinoids with largely produced in *Cannabis*¹

- Predominant compounds found in *Cannabis*, THCA and CBDA, are pharmacologically inactive¹-²

- THCA and CBDA are thermally unstable and can be decarboxylated when exposed to heat or light (smoking, cooking) into “active” phenolic THC and CBD³

CBD, cannabidiolic acid; THCA, tetrahydrocannabimolic acid.
Potential Therapeutic Uses of Phytocannabinoids

- Phytocannabinoids are naturally occurring cannabinoids that:¹,²
 - Bind to cannabinoid receptors, triggering metabolic effects
 - Decrease the breakdown of endocannabinoids, increasing their availability
- These plant-derived compounds have potential for many therapeutic applications

CBD has Multiple Mechanisms of Action

Binds cannabinoid receptors, CB1 and CB2, weakly
 • Likely accounts for lack of psychoactivity

At low micromolar to sub-micromolar concentrations:
 • Blocks equilibrative nucleoside transporter (ENT), GPR55, and the TRPM8 channel
 • Enhances activity of:
 • 5-HT1a receptor
 • α1 and α1β glycine receptors
 • TRPA1 channel
 • Has bidirectional effect on intracellular calcium

At higher micromolar concentrations:
 • Activates the PPAR-γ and TRPV1 and TRPV2 channels
 • Inhibits cellular uptake and FAAH-catalyzed degradation of anandamide

THC: Mechanisms of Action

• THC is the most psychotropic component in the Cannabis plant, and produces a wide range of psychoactive effects, such as feeling ‘high’, anxiety, paranoia, and cognitive deficits\(^1,2\)

• By interacting with CB1 receptors, THC activates the brain’s reward system, therefore, alters normal brain communication\(^1,2\)

• Potential immunological or anti-inflammatory effects of THC are likely mediated via CB2 receptors\(^3\)

Interactions of CBD and THC and Their Effects on ECS

Preclinical studies
- CBD combined with isomeric tetrahydrocannabinols caused ‘synergistic hypnotic activity in the mouse’
- CBD inhibited THC effects on mouse catatonia, rat ambulation and rat aggression, but potentiated THC effects on mouse analgesia and rat rope climbing
- CBD decreased THC suppression of behavior in rats and pigeons
- CBD potentiated THC-induced changes in hepatic enzymes
- CBD increased THC potentiation of hexobarbitone in rats
- CBD increased THC reduction of intestinal motility in mice
- CBD reduced THC hypothermia and bradycardia
- CBD blocked THC inhibition of pig brain monamine oxidase
- CBD antagonized THC antinociceptive effects in mice
- CBD prevented tonic and clonic convulsions induced by THC
- CBD antagonized THC suppression of operant behavior in monkeys
- CBD delayed THC discriminative effects
- CBD prolonged THC cue effects in rats
- CBD antagonized THC catalepsy in mice
- CBD increased THC analgesic activity and anti-erythema
- CBD prolonged and reduced the hydroxylation of THC

Clinical studies
- CBD decreased anxiety and ‘psychotic scores’ caused by THC
- CBD slightly increased time to onset, intensity and duration of THC intoxication
- CBD attenuated THC euphoria
- CBD improved sleep and decreased epilepsy
- CBD decreased cortisol secretion and had sedative effects
- CBD provided antipsychotic benefits
- CBD attenuated the appetitive effects of THC

Pharmacological Properties of Terpenoids

- β-caryophyllene is the only terpenoid that is able to bind to cannabinoid receptors

- However, all terpenoids interact synergistically with cannabinoids to produce physiological effects

- This is known as the “entourage effect”

<table>
<thead>
<tr>
<th>Terpenoid</th>
<th>Pharmacological Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limonene</td>
<td>Antidepressant/immunostimulant, anxiolytic, apoptosis of breast cancer cells, active against acne bacteria, dermatophytes, gastric reflux</td>
</tr>
<tr>
<td>α-pinene</td>
<td>Anti-inflammatory, bronchodilatory, acetylcholinesterase inhibitory</td>
</tr>
<tr>
<td>β-myrcene</td>
<td>Inflammation blocking, analgesic, sedating, muscle relaxant, hypnotic, blocking of hepatic carcinogenesis by aflatoxin</td>
</tr>
<tr>
<td>Linalool</td>
<td>Antianxiety, sedative, local anesthetic, analgesic, anticonvulsant/anti-glutamate</td>
</tr>
</tbody>
</table>

- Also found in lemon
- Also found in pine
- Also found in hops
- Also found in lavender

<table>
<thead>
<tr>
<th>Terpenoid</th>
<th>Pharmacological Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerolidol</td>
<td>Sedative, skin penetrant, antimalarial, anti-leishmanial</td>
</tr>
<tr>
<td>Phytol</td>
<td>Prevents vitamin A teratogenesis, GABA elevation</td>
</tr>
<tr>
<td>β-caryophyllene</td>
<td>Anti-inflammatory, gastric cytoprotective, antimalarial, treatment of pruritus and addiction</td>
</tr>
<tr>
<td>Caryophyllene oxide</td>
<td>Decreases platelet aggregation, antifungal, insecticidal/anti-feedant</td>
</tr>
</tbody>
</table>

- Also found in orange
- Also found in green tea
- Also found in black pepper
- Also found in lemon balm

Preclinical Evidence Supporting the Therapeutic Application of β-caryophyllene

<table>
<thead>
<tr>
<th>Dementia(^1-3)</th>
<th>Pain Management(^4-6)</th>
<th>Metabolic Disorders(^7-10)</th>
<th>Depression & Anxiety(^4,11-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroprotective effect</td>
<td>Attenuation of mechanical allodynia</td>
<td>Alleviation of insulin resistance and oxidative-stress</td>
<td>Antidepressant, anti-anxiety, anti-compulsive effects</td>
</tr>
<tr>
<td>Reductions in β-amyloid burden, microglial activation, COX-2 proinflammatory cytokines</td>
<td>Reduction in neuropathic pain</td>
<td>Restoration of antioxidant status, reduction in proinflammatory cytokines</td>
<td>Reduction in depression-like behavior</td>
</tr>
<tr>
<td>Improvement in cognitive deficits</td>
<td>Reduction in mechanical hyperalgesia, increase in muscle withdrawal thresholds</td>
<td>Promotion of glucose-stimulated insulin secretion</td>
<td>Anti-immobility effect</td>
</tr>
</tbody>
</table>

What Is Hemp?

- Variety of *Cannabis* species
- Bred for seed, stalk (fiber and hurd), leaves, or flower
- Each component has many potential uses
- Contains nonpsychoactive phytocannabinoids
- Hemp is classified differently than marijuana
Hemp vs. Marijuana

- Cannabis classified as marijuana has a far higher concentration of THC relative to Cannabis classified of hemp; THC is the component of marijuana known for psychoactive effects.
- Cannabis classified as hemp has a low concentration of THC; hemp is not known to have psychoactive effects.

*Based on dry weight.

Hemp Extract Contains a Multitude of Bioactives (in Addition to CBD) that Modulate the ECS

- **Phytocannabinoids**
 - e.g. CBD, CBDA, CBN, CBNA, CBG, CBGA

- **Terpenes**
 - e.g. D-limonene, β-myrcene, β-caryophyllene

- **Phenolic compounds**
 - e.g. flavonoids such as cannflavin A and B

Hemp extract vs. CBD isolate

CBDA, cannabidiolic acid; CBG, cannabigerol; CBGA, cannabigerolic acid; CBN, cannabinol; CBNA, cannabinolic acid.

Improved Dose Response with CBD-Enriched Cannabis Extract

Preclinical study in mice with acute inflammation:

• Purified CBD (left) gives a bell-shaped dose response curve, which limits its potential clinical use

• By contrast, CBD-enriched Cannabis extract (right) shows a linear dose response
 o Higher doses are associated with increases in efficacy of anti-pain and anti-inflammatory responses

Figure adapted from: Gallily R et al. Pharmacol Pharm. 2015;6:75-85.
Clinical Benefits with CBD-rich *Cannabis* Extract

- This meta-analysis compared clinical effects of CBD-rich extracts to purified CBD in epilepsy.

- Treatment with extracts was more likely to result in:
 - Improvements in seizure frequency in 2/3 of patients
 - Less reports of mild to severe adverse effects
 - Usage of lower average dose

The x axis represents the rate of clinical improvement (from 0 to 1, 100% = 1). The y axis is arbitrary “Study ID.” The size of each point represents the number of patients included in the study and gives an idea of the “weight” of each study. The dotted line is the average, regardless of treatment.

Figure adapted from: Pamplona FA et al. *Front Neurol.* 2018;9:759.
Binding to cannabinoid receptors, triggering metabolic effects

Physiologic and metabolic effects

CB1/CB2 receptors
Non-CB receptors
Decrease the breakdown of endocannabinoids, and their signaling termination; therefore, increasing their availability.
Safety Profile of Phytocannabinoids
Safety of Phytocannabinoids

Chronic use and doses ≤ 1,500 mg/day of CBD reportedly well-tolerated in humans

Nonpsychoactive
- Low concentration of THC (< 0.3%)
- Phytocannabinoids with very low affinity for CB1 receptor

Nonaddictive
- No tolerance develops with repeat dosing

Pregnancy concerns: No hormonal or genotoxicity profiling

Summary: Key Takeaways

• The endocannabinoid system (ECS) is a critical homeostatic regulator in the body

• The hemp plant contains several compounds that modulate the ECS and have many physiological benefits

• CBD is a phytocannabinoid that is often extracted, but hemp extract also contains multiple other active compounds and has therapeutic effects in many areas

• Terpenoids in hemp extract act synergistically with the phytocannabinoids, which widens the therapeutic possibilities of hemp extract